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Integrating by parts between the limits 0 and x yields 

( - ) s + 1 [1 r*cos(s+%)psm§Pcos$pdp] 
CL(S)= — / . 

27r(H4)lr JO 2(r2+sin2i/3)3/2 J 
(C3) 

On integrating the factor cos(s+|)/3 by parts again, a 

I. INTRODUCTION 

NUCLEAR spin-lattice relaxation involves the ex­
change of energy between the nuclear-spin system 

and the "lattice" of the material in which the spins are 
located. The rate at which the thermal equilibrium is 
established among the nuclear spin-energy levels is ex­
pressed in terms of a parameter Ti, called the spin-
lattice relaxation time. Bloembergen, Purcell, and 
Pound have discussed a general theory of relaxation in 
liquids and have shown that T\ can be expressed in 
terms of the Fourier transforms of the correlation func­
tion of the interactions coupling the nuclear spins to 
the lattice of the liquid.1,2 In ordinary liquids, the im­
portant relaxation mechanisms are the couplings of the 
nuclear spins to the random translational and rota­
tional motions of the molecules via the magnetic dipolar 
interaction of the nuclear moments. Recently, cold-
neutron spectroscopy has given detailed information 
about the atomic motions in liquids,3"-5 and has led 
many workers to propose quasicrystalline models6-9 for 
them. The present work is concerned with the in-

1 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 
73, 679 (1948). 

2 N. Bloembergen, thesis, Leiden, 1948 (Martinus, Nijhoff, The 
Hague). 

3 B. N. Brockhouse, Suppl. Nuovo Cimento 9, 45 (1958). 
4 B. N. Brockhouse, Phys. Rev. Letters 2, 287 (1959). 
5 D. J. Hughes, H. Palevsky, W. Kley, and E. Tunkelo, Phys. 

Rev. Letters 3, 91 (1959). 
6 K. S. Singwi and A. Sjolander, Phys. Rev. 119, 863 (1960). 
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9 A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 126, 
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contribution of order l/(s+§)2 is obtained, but the 
integrated term clearly vanishes at both limits. A 
further integration by parts yields a nonvanishing term 
of order l/(s+J)3 , thereby confirming the result (6.15) 
quoted in the text. In a similar way, one may derive 
all the other asymptotic expressions of the Green's 
function elements which are quoted. 

terpretation of T\ measurement for water on the basis 
of these models, on the lines of approach of Bloem­
bergen, Purcell, and Pound. Sections II and III are 
devoted to the discussion of the spin-lattice relaxation 
in liquids on the basis of the jump-diffusion model and 
the stochastic model, respectively. In Sec. IV, the 
theory is applied to the case of water and the results 
are compared with the experiment. 

II. JUMP-DIFFUSION MODEL 

We shall start with the general expression 1»10 for T\ 

T r 1 = f y%*I(I+ l ) [ /a) (co0)+/(2) (2«o)]. (1) 

Here, y is the nuclear gyromagnetic ratio, a>o the Larmor 
frequency of nuclei, / the nuclear-spin number and 

jw(u)= I ei<atkm{t)dt\ m=l,2. (2) 
J —00 

The correlation function km{t) is related to the random 
functions Fm(t) by the relation 

km{t) = N{Fm{t')Fj{t'+t))^n, (3) 

where N is the number of molecules per cm3. For 
dipole-dipole interactions 

Fl(t) = (_) j / M 0 = \ 4 ) 

\15/ r3 \ 1 5 / r3 

where F2
m (#,<£) is a spherical harmonic and (r,0,<£) de­

note the spherical polar coordinates of a spin relative 
10 R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954). 
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to the other. The time average in Eq. (3) can be re­
placed by ensemble average11,12 by introducing a proba­
bility function P(r , r 0 , / ) . This gives 

>(t) = NjJlg(ro)g(r)Ji* 

XFm(to)Fm*(T)P(T,io,t)dTdt0. (5) 

Here, g(r) is the radial distribution function. P(r,ro,0 
represents the probability per unit time that the two 
spins separated by ro at 2=0, are separated by r at 
ti me t. 

The calculation of 7\, therefore, involves the con­
struction of the probability function P(r,r0,0- It will 
depend upon the details of the atomic motions. We shall 
now use a simple model in which a molecule in a liquid 
performs an oscillatory motion for a mean time ro and 
then diffuses in a continuous manner for a mean time n 
and again repeats this sort of motion. On the basis of 
this model, Singwi and Sjolander6 have calculated the 
Fourier transform of Van Hove's self-diffusion function 
Gs(ryt), which gives the probability of finding a mole­
cule within unit volume at r at time /, if it was at origin 
at 2=0. If r denotes, not a vector from a fixed point, 
but the relative distance r—ro between two identical 
diffusing molecules, the theory of random flight gives13 

P(r,ro,0 = G.(r-ro,2fl. 

Hence, according to Singwi and Sjolander6 

2r0 r r (c+doo2T0
2)b 

i> ( r , r o , 0=(2x) -4—— / / — -
1+TI/TO7 J tr+ay 

(6) 

ro2(/+"Wg) (7) 

Xexp{—ik- (r— r0)+2io^—%k2y (<*>)} dkdu, 

where 

b=l+k2D1r1-e-^y^, 

c= l+k2D1T1+2r1/ro+ ( T I / T 0 ) M ^ ( O O ) , 

d= (r i/ro)M*^^>, (8a) 
/ = (l+k2D1r1)

2+ (r1/ToY+2(T1/ro)e-^yM, 

g=ri2/ro2. 

Di is the diffusion coefficient of continuous motion and 
is related to the actual diffusion coefficient D through 
the relation 

Z V I ~ D T 0 ( 1 + T I / T 0 ) (8b) 
and 

Y(°°) 
¥ / - - / (g) 

0 2 

w r' 

MJo 
coth(z/2kBT)dz. (8c) 

Here, M is the mass of the molecule, T is the absolute 
temperature of the system, kB is the Boltzmann con-

1 1 1 . Oppenheim and M. Bloom, Can. J. Phys. 37, 1324 (1959). 
1 2 1 . Oppenheim and M. Bloom, Can. J. Phys. 39, 845 (1961). 

stant, and f(z) is the normalized frequency-distribution 
function. In the Debye approximation 

h2 6T 
7(oo) = for 7 » 0 , 

MkB®2 
(9) 

® being the Debye temperature of the quasicrystalline 
liquid. 

From Eqs. (5) and (7), the correlation function can, 
therefore, be written as 

km(t)=(2ir)-*Nc1 —fill 
TI/TOJ J J J 

x-

1 + n / 
lg(ra)g(r)yi> 

(c+duW)b 

fo8 r8 62+c»Vo2(/+coVo2f) 

Xexp{-?k- (r-r0)+2«o<-§#?(<»)} 

Xdkdwdrdro, (10) 

where ci=87r/15 and c 2 =32x/15 . 
The integrals appearing in (10) are similar to those 

considered by Torrey.13 Following his procedure, we get 

&m [J) 
Ncm 

T 1 + Tl/ro. 

X 

Jsn(kr) 

Hc+do^To^b 

•J 

&2+co2ro2(/+co2r0
2g) 

Xdkda), (11) 

where Ji is a Bessel function of order /. The Fourier 
transform of km(t) appearing in expression (1) for Ti 
can now be immediately calculated. If the molecules 
are regarded as spheres of diameter a, then g(r)==0 for 
r<a and g(r) = 1 for r>a. In this hard-sphere approxi­
mation, the r integration becomes trivial, giving 

/< w ) («„) = -
Ncm TO 

QJ 0 

Jm2(ka) 

az 1+TI/TQJO k 

(c+da)oW/4:)b 
X -

62+Wro2/4)[/+(co0
2ro2g/4)] 

(12) 

In two limiting cases (i) T£>>TQ and (ii) ri<<Cro, expres­
sion (12) is further simplified. For r ^ r o , using (8b) 
and (12) we get 

/<">(«o) 
Ncm rJm2(ka) jyctn r 

a3 Jo 

k2D 

(^Z))2+co0V4 
-dk. (13) 

This is the same expression as obtained by Bloem-
bergen, Purcell, and Pound1 using for P(r , r 0 , / ) , the 

13 H. C. Torrey, Phys. Rev. 92, 962 (1953). 
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solution of the diffusion equation given by14 

P(r,r„,0 = (8xZ?0-8/2 exp{ - (| r - r0| f/Wt). (14) 

In the second case of TI<3CT0, neglecting n / r o as com­
pared to unity, Eq. (12) gives 

;ww 
Ncm r 

a3 A 

Jm2(ka) 
,-*&27(°o) 

x-
l-e-Wy^/l+tfDro 

co0
2r0

2/4+[l- -Wy^/(l+k2DTo)~]> 
-dk. (15) 

III. STOCHASTIC MODEL 

Recently, Rahman et al.9 have developed a stochastic 
model of liquid which is based on the concept that the 
heat motions in a liquid are very similar to that in a 
solid. They regard the frequency spectrum to be of the 
Debye type with upper limit cop. Assuming the modes 
from zero to co' to be diffusive and the rest vibratory, 
the solution of the stochastic equation for atomic 
motions in liquids gives 

P(r,ro,0 = C 4 ^ ( 2 / ) ] - ^ e x p [ - ( | r - r o | 2 / 4 p ( 2 / ) ) ] , (16) 

where 

kBTr/^\ze-^-l+^t 
o(t)-

M LVoV 

with 

<£>(cô ) = o)-

X 

and 

+—($(W D ,o-*KO)l 
a>D

z J 
(16a) 

1 

^l+r2)1'2 

/ T<at \ 
e x p \ ( i+r 2 )W 

( l - r 2 ) sinf 
0)t 

\(i+r2yiy 

-2Tcos(-
cot 

\(i+r2)1/2 

l + p ^ l - a 2 ) - 1 

)]• (16b) 

(16c) 

Here fi and a are the damping parameters of the dif­
fusive modes and the vibratory modes, respectively, and 
are introduced to account for the damped motions in a 
liquid. 

If we made use of the Fourier expansion 

e x p ( - | r - r 0 | 2 / 4 p ( 2 / ) ) 

= (2TT) - 3 / 2 [2 P (20 ] 3 / 2 f exp(-p(20&2) 

Xe i k '< r- r o )dk, (17) 
14 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 

the correlation function can be written from Eqs. 
(5) and (16) 

hn(f) 
Ncm r 

" a" Jo 

Ncm f" Jm2(ka) 

' o k 
e~(>v»k2dk. (18) 

The Fourier transform of (18) is 

J<m)(«o) = 
Ncm rJm2(ka) 

a? Jo 

if X( / eia°'f^(-p(2t)k*)dt\dk. (19) 

IV. DISCUSSION 

The theory developed in previous sections will now 
be applied to water in the calculation of proton-
relaxation time. As mentioned earlier, the inter-
molecular and intramolecular interactions responsible 
for spin-lattice relaxation in a liquid are, respectively, 
the coupling of the nuclear spins to the translational 
motion and to the rotational motion of the molecules. 
Equations (12) and (19) yield only the intermolecular 
contribution to T\. For the intramolecular contribution 
we take the expression15 

/ 1 \ __ 3 7*ft*r Tc 

W intra" 10 &6Ll+C00
2 

4rc 

l+4o>o2rc
2-

(20) 

Here, rc is the correlation time for the reorientation 
process and b the interproton distance within the mole­
cule. TC is related to the diffusion coefficient D through 
the relation1 

TC=O?/18D. (21) 

Ti is given in terms of these two contributions by 

i /r1=(i/r1) i n t e r+(i/r) intra • 

(22) 
I t is convenient to discuss the evaluation of T\ sepa­
rately for the jump-diffusion and the stochastic models. 

A. Jump-Diffusion Model 

Expression (12) in all its generality is somewhat in­
volved for being used in our calculation. We have here 
investigated some special cases. When n<<Cro, we can 
evaluate Tx from Eqs. (15), (20), and (22). From the 
experimental measurements on the broadening of the 
quasielastic peak of the scattered, the value of TO is 
found to be6 4X10~12 sec. The values of the other 
molecular parameters for water used by us throughout 

15 A. Abragam, The Principles oj'Nuclear Magnetism (Clarendon 
Press, Oxford, 1961), p. 298, 



1434 P . K . S H A R M A A N D S, K. J O S H I 

this calculation are 

M = 18 atomic units, 
A ^ ^ S X l C P c m - 3 , 

a = 3 . 4 8 X 1 0 - 8 c m , 

^=1 .58XlO- 8 cm, 
Z>=1.8SX10-Bcm2secr1 , 

and 
0 = 1 3 5 ° K . 

Making use of these data and the fact that at all prac­
tical radio frequencies, the Larmor frequencies of the 
nuclei are much smaller than the characteristic fre­
quencies of molecular motions, we find 7 \=3.69 sec. 
In the second case of simple diffusion, i.e., TI^>TO, using 
Eq. (13) we get Zi=3.64 sec. For an intermediate case, 
taking T I = T 0 = 3 . 6 X 1 0 ~ 1 2 sec, we obtain from Eq. (12) 
and (20), 2 \=3 .73 sec. Integrations involved in Eqs. 
(12) and (15) were performed numerically. 

B. Stochastic Model 

The best values of the parameters occurring in this 
model to fit the neutron scattering data are9 ®D 
= 135°K, 0 ' = 15°K, and r = 2.0. Here, COD and a/ have 
been changed into temperatures through the relation 
fio)=kB®. The fourth parameter ft is obtained from the 
relation 0 = (o>'/uDykBT/MD. The use of Eqs. (20), 
(21), (22), and the numerical integration of (19) gives 
J T I = 3 . 6 7 sec. 

The experimental value16 of T\ is 3.6 sec at 20°C for 
water completely free from dissolved oxygen. A com­
parison of this value with the calculated ones shows 
that the use of both the models yields results in good 
agreement with the experiment. Due to some uncer­
tainty in the estimation of the molecular diameter a, 
the calculated values of T\ may not be very reliable. 

From the above study, we conclude that T\ is not 
very sensitive to the details of molecular motions in a 
liquid. The present treatment, however, has some spe­
cial features. Our treatment of nuclear spin relaxation 
in liquids is based on more realistic and quantitative 
models for atomic motions in liquids. These theoretical 
models had fair amount of success in explaining cold-
neutron scattering data where simple diffusion theory 
proved to be a failure. The theory of Bloembergen, 
Purcell, and Pound provides no basis for a closer study 
of diffusion mechanism and describes the complicated 
behavior of liquids in terms of a single macroscopic 
parameter D. 
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